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Abstract
We introduce a Wigner-like quasidistribution function to describe quantum
systems with the SU(2) dynamic symmetry group. This function is defined
in a three-dimensional group manifold and can be used to represent the states
defined in several SU(2) invariant subspaces. The explicit differential Moyal-
like form of the star product is found and analyzed in the semiclassical limit.

PACS numbers: 03.65.Ta, 03.65.Sq, 03.65.Fd

1. Introduction

The concept of phase-space representation of quantum mechanics, introduced by Wigner [1],
provides a useful insight into a problem of correspondence between quantum and classical
worlds. Numerous applications of the theory of phase-space methods to physical problems
have been extensively discussed in the last decades [2, 3]. Several types of quasidistribution
functions for physical systems with different types of dynamic symmetries were proposed,
starting from the flat q − p space [7, 8], spin-like systems [5, 11, 12] (see also [13–17]),
finite-dimensional quantum systems [23], and recently introduced Wigner-like mapping for a
wide class of continuous (Lie type) and discrete groups [18–21].

It turns out that the language of quasidistribution functions is very convenient not only
for graphical representation of quantum states in the corresponding classical phase space,
but also for analysis of quantum system’s evolution in the semiclassical limit [25–34]. The
dynamic properties of quasiclassical systems are usually studied in the framework of the
Moyal correspondence, where both states and observables are considered as functions (Weyl
symbols) on a phase space, in such a way that average values are computed by integration over
the phase space of some quasi-distribution function with the Weyl symbol of a corresponding
operator and the usual product of two operators is mapped onto the so-called star product of
their symbols [4, 6]. Such a star product allows us to replace the standard manipulations of
operators in the Hilbert space by a differential (or integral) operator acting on the product
of Weyl symbols. Although, a general expression for the integral representation of the star
product is easy to obtain (see, e.g., [19]), it is not useful to perform calculations (except the
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simplest case of the Heisenberg–Weyl group). In spite of its obvious convenience for practical
purposes, the explicit differential form of the star product to the best of our knowledge is
available only for quantum systems with the Heisenberg–Weyl [4, 9, 10] and SU(2) [32]
symmetry groups. An important advantage of the differential form of the star product is in
the possibility of its expansion on the semiclassical parameter (which is different for each
specific quantum system), which usually leads to an essential simplification of the evolution
equation for the corresponding Wigner function (Weyl symbol of the density matrix). It has
been shown that even such a truncated evolution equation describes quite well sufficiently
long-time dynamics even for essentially nonlinear quantum systems [25, 26, 29, 30, 33].

In the present paper, we will be interested in the quasiclassical description of quantum
systems with SU(2) dynamic symmetry group. Usually, the Stratonovich–Weyl [5, 12, 16]
quasidistribution function is used for the phase-space description of spin-like systems,
which corresponds to some fixed finite-dimensional representation of the SU(2) group.
In this case, the classical phase space (which is the two-dimensional sphere S2(θ, φ))
with the corresponding symplectic structure is well defined and the Weyl mapping inside
each irreducible subspace is invertible (one-to-one correspondence). Another, the so-called
metaphase-space representation was introduced in [18], where the Wigner operator, which
establishes the Weyl mapping, is defined as a Fourier transform of the SU(2) group element
in the polar parametrization (see also [24], where a very similar construction was used for
representation of polarization states of light). Such Wigner-like functions, being invertible and
covariant under group transformations, nevertheless do not have good analytical properties,
related to the fact that the Fourier transform, in general, does not preserve the periodicity
property of the group element. Besides, the polar parametrization is not convenient for
obtaining the differential form of the star product. Recently, the ‘midpoint’ approach to the
Wigner–Weyl mapping has been developed in [20, 21]. Nevertheless, such a very attractive
and intuitive approach leads to a Wigner function which, in the particular case of the SU(2)

symmetry, depends on four discrete indices, besides the group parameters. As a result, only
the integral form of the star product is obtained, which makes it not very suitable for the
semiclassical analysis.

In this paper, we introduce an alternative Wigner-like quasidistribution function for
quantum systems with SU(2) dynamic symmetry group, which allows us to obtain a differential
form of the star product and consequently analyze the quantum dynamics in the semiclassical
limit. The principal difference with the standard Stratonovich mapping consists in taking into
account simultaneously all the irreducible representations of the SU(2) group over which the
initial state of a quantum system is expanded, as well as to extend the star-product technology
to the Hamiltonians not preserving SU(2) invariant subspaces.

In section 2, we briefly recall the fundamentals of the Stratanovich–Weyl mapping for
spin-like systems. In section 3, we define the Weyl mapping for the SU(2) group in the
Euler parametrization and discuss its main properties. In section 4, we derive the differential
form of the star product and discuss its form in the semiclassical limit. The Hermiticity,
covariance and some other properties are proved in the appendix A. The general expression
for the star-product operator is obtained in the appendix B.

2. Stratonovich–Weyl correspondence for spin systems

According to the axiomatic approach to the phase-space formulation of quantum mechanics
[5] we associate each operator f̂ with its symbol Wf (�)—a c-number function defined
in the corresponding phase space. Obviously, such an (invertible) map f̂ → Wf (�)

depends on the ordering rules of functions of non-commutative operators, which is taken into
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account by introducing an additional index s, specifying a certain operator ordering, such that
f̂ → W

(s)
f (�), where the value s = 0 corresponds to the Stratonovich–Weyl symbol, while

s = ±1 leads to the Beresin contravariant P-symbol and covariant Q-symbol, respectively.
A general rule to associate with each operator f̂ acting on a Hilbert space a function W

(s)
f

(s-parametrized symbol of f̂ ) defined on the phase space is given by the ‘Stratonovich–Weyl
correspondence’ [5, 16, 19]

W
(s)
f (�) = Tr(ŵs(�)f̂ ),

where ŵs(θ, φ) is an s-parametrized Stratonovich–Weyl kernel. From now on we will be
interested exclusively in the symmetric operator ordering, s = 0 (so that the symbol of the
density matrix is commonly called the Wigner function), which possess adequate properties
in the semiclassical limit [32].

The Stratonovich–Weyl kernel ŵ(θ, φ) for spin-like systems (systems with SU(2)

dynamic symmetry group for a fixed (2S + 1)-dimensional irreducible representation) is
introduced according to [5, 12, 16]

ŵ(θ, φ) = 2
√

π√
2S + 1

2S∑
L=0

L∑
M=−L

Y ∗
LM(θ, φ)T̂ S

LM = ŵ†(θ, φ), (θ, φ) ∈ S2, (1)

where YLM(θ, φ) are the spherical harmonics, T̂ S
LM are the irreducible rank L tensor operators

[38] which form an orthogonal operator basis in the space of (2S + 1) × (2S + 1) matrices and
are defined as

T̂ S
LM =

√
2L + 1

2S + 1

S∑
m,m′=−S

CSm′
Sm,LM |S,m′〉〈S,m|. (2)

Here CSm′
Sm,LM are the Clebsch–Gordan coefficients which couple two representations of spin S

and L (0 � L � 2S) to a total spin S. The kernel ŵ(θ, φ) is normalized as

Tr ŵ(θ, φ) = 1,
2S + 1

4π

∫
S2

d�ŵ(θ, φ) = I, (3)

where d� = sin θdθ dφ is the invariant measure on the sphere.
The Stratonovich–Weyl symbol of the operator f̂ ,

Wf (θ, φ) = Tr(f̂ ŵ(θ, φ)), (4)

is covariant under rotations and provides the overlap relation

2S + 1

4π

∫
S2

d�Wg(θ, φ)Wf (θ, φ) = Tr(ĝf̂ ). (5)

The operator f̂ can be reconstructed from its symbol Wf (θ, φ) (4) through the following
relation:

f̂ =2S + 1

4π

∫
S2

d�ŵ(θ, φ)Wf (θ, φ). (6)

In terms of the expansion coefficients of an operator f̂ from (2S+1)-dimensional representation
of the universal enveloping algebra of su(2) in the basis of irreducible tensor operators T̂ S

lk (2),

f̂ =
2S∑
l=0

l∑
k=−l

flkT̂
S
lk , (7)

3
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its Stratonovich–Weyl symbol takes the form

Wf (θ, φ) = 2
√

π√
2S + 1

∑
l,k

flkYlk(θ, φ). (8)

The (associative but non-commutative) operation of star product reduces the calculation
of the symbol of a product of two operators to an application of some operator L̂(θ, φ) to the
product of individual symbols:

Wfg = Wf ∗ Wg = L̂(θ, φ)[Wf Wg]. (9)

The star product allows us to rewrite the Schrödinger equation for the density matrix,

i∂tρ = [H, ρ],

as a Liouville-type evolution equation for the Wigner function,

i∂tWρ = {WH,Wρ}M, (10)

where H is the system Hamiltonian and

{Wf ,Wg}M = Wf ∗ Wg − Wg ∗ Wf

is the so-called Moyal bracket.
The integral form of the star product immediately follows from definition (4) and the

reconstruction relation (6)

Wfg =
(

2S + 1

4π

)2 ∫ ∫
d�1 d�2 K(θ, φ; θ1, φ1; θ2, φ2)Wf (θ1, φ1)Wg(θ2, φ2), (11)

where

K(θ, φ; θ1, φ1; θ2, φ2) = Tr [ŵ(θ, φ)ŵ(θ1, φ1)ŵ(θ2, φ2)] . (12)

Unfortunately, this kernel has quite a complicated form and, thus, is not convenient for practical
use. The differential form of the star product was found in [32] and possess as an important
property that in the large spin limit, ε = (2S + 1)−1 � 1, the Moyal brackets are reduced
to the Poisson brackets in such a way that the first-order corrections disappear, so that the
semiclassical evolution equation takes the form

∂tWρ ≈ 2ε{Wρ,WH }P + O(ε3), (13)

where {, }P denotes the Poisson brackets on the sphere

{, }P = 1

sin θ

(
∂

∂φ f

⊗ ∂

∂θ g
− ∂

∂θ f
⊗ ∂

∂φ g

)
.

We stress, that only in the case of the Wigner function that terms of order ε2 do not appear in
(13) [32].

3. Generalized Wigner function

3.1. Definition and properties

In this section, we generalize the Stratonovich–Weyl kernel to the case of quantum systems
for which the representation space is a direct sum of several SU(2) irreducible subspaces.

Let us consider a quantum system with SU(2) dynamic symmetry group, so that the
allowed transformations are generated by elements from the su(2) enveloping algebra. Given

4
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an arbitrary operator f̂ , it can be represented as a linear combination of the irreducible tensor
operators T J ′J

Kq as follows:

f̂ =
∞∑

J,J ′=0,1/2,1,...

J ′+J∑
K=|J ′−J |

K∑
q=−K

f J ′J
Kq T̂ J ′J

Kq , (14)

where

T̂ J ′J
Kq =

∑
mm′

√
2K + 1

2J ′ + 1
CJ ′m′

JmKq |J ′,m′〉〈J,m|, (15)

here CJ ′m′
JmKq are the Clebsch–Gordan coefficients which couple two representations of spin J

and K (|J ′ − J | � K � J + J ′) to a total spin J ′. The tensors (15) form an orthonormal basis

Tr
(
T

J ′
1J1

K1q1
T

†J ′
2J2

K2q2

)
= δJ ′

1J
′
2
δJ1J2δK1K2δq1q2 , T

†J ′J
Kq = (−1)2K+J ′−J+qT JJ ′

K−q, (16)

so that the expansion coefficients f J ′J
KQ are

f J ′J
KQ = Tr

(
T

†J ′J
KQ f̂

)
.

The tensors T J ′J
kl possess the following transformation property under the SU(2) rotations:

TgT
J ′J
Kl Tg

† =
∑

q

T J ′J
Kq DK

ql(φ, θ, ψ), (17)

where

Tg = e−iφSz e−iθSy e−iψSz , 0 � φ < 2π, 0 � θ < π, 0 � ψ < 4π,

and Dk
ql(φ, θ, ψ) is the Wigner D-function in Euler parametrization, satisfying the

orthogonality relation

2k1 + 1

16π2

∫
dV D

k1∗
q1q

′
1
(φ, θ, ψ) D

k2

q2q
′
2
(φ, θ, ψ) = δk1k2δq1q2δq ′

1q
′
2
, dV = sin θ dφ dθ dψ.

Changing the summation indices in (14), j = J ′ + J,Q′ = J ′ − J and making use of the
resummation formula

j∑
Q′=−j

j∑
K=|Q′|

aQ′K =
j∑

K={0,1/2}

K∑
Q′=−K

aQ′K,

where {0, 1/2} means that the index K runs from 0 or 1/2 for integer and semi-integer values
of j respectively, we obtain the following expansion:

f̂ =
∞∑

j=0,1/2,1,...

j∑
K={0,1/2}

K∑
Q,Q′=−K

f
j+Q′

2
j−Q′

2
KQ T

j+Q′
2

j−Q′
2

KQ =
∞∑

j=0,1/2,1,...

f̂ j . (18)

Now we define the kernel operator as follows:

ω̂j (�) =
j∑

K={0,1/2}

K∑
Q,Q′=−K

√
2K + 1

j + 1
DK

QQ′(�)T
j+Q′

2
j−Q′

2
KQ , (19)

where � = (φ, θ, ψ). Using the transformation property (17) we can represent the kernel
(19) in the following symmetric form:

ω̂j (�) = Tg(�)PjTg
†(�),

5
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where

Pj =
j∑

K={0,1/2}

K∑
Q,Q′=−K

√
2K + 1

j + 1
T

j+Q′
2

j−Q′
2

KQ .

So that, the j -symbol of an operator f̂ is defined as

W
j

f (�) = Tr(f̂ ω̂j (�)). (20)

Using expansion (18) and the orthogonality relation (16) we easily find

W
j

f (�) =
j∑

K={0,1/2}

K∑
Q,Q′=−K

√
2K + 1

j + 1
f

j+Q′
2

j−Q′
2

KQ DK∗
QQ′(�). (21)

Note, that if f̂ is an operator acting in a single SU(2) irreducible subspace, then automatically
Q′ = 0 in the above equation and we reconstruct the standard Stratonovich–Weyl symbol
(independent of the angle ψ) in the irreducible subspace of dimension j + 1.

The above kernel possesses the following properties (proved in appendix A):

(a) Hermiticity

ω̂
†
j (�) = ω̂j (�); (22)

(b) Covariance

Tgω̂j (�)T †
g = ω̂j (g · �), (23)

where g ·� means the standard transformation of Euler angle under SU(2) group rotations
[38];

(c) Normalization

j + 1

16π2

∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ 4π

0
dψ ω̂j (�) =

{
Ij+1, j integer
0, j semi-integer; (24)

(d) The trace condition

Tr ω̂j (�) =
{

1, j integer
0, j semi-integer

; (25)

(e) Reproductive kernel

�jj ′(�;�′) = Tr
(
ω̂j (�)ω̂

†
j ′(�

′)
) = δjj ′�j(�;�′), (26)

where �j(�;�′) is an analog of the delta function on the group manifold, when it is acting
on the j -symbols, in the sense that

j + 1

16π2

∫
dV ′�j(�;�′)Wj

f (�′) = W
j

f (�). (27)

Equation (26) immediately leads to the reconstruction relation

f̂ =
∞∑

j=0,1/2,1,...

f̂ j , (28)

where the j -component of the operator f̂ (compare with (18 )) is expressed as

f̂ j = j + 1

16π2

∫
dV W

j

f (�)ω̂j (�), (29)

6
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and the overlap relation takes the following form:

Tr(f̂ ĝ) =
∞∑

j=0,1/2,1,...

j + 1

16π2

∫
dV W

j

f (�)Wj
g (�). (30)

It is worth noting that because the symbol of the identity operator (in the whole space) is

W
j

I (�) =
∞∑

n=0,1,2,...

δjn,

the normalization condition is

Tr f̂ =
∞∑

j=0,1,2,...

j + 1

16π2

∫
dV W

j

f (�).

Finally, the kernel (19) satisfies all the Stratonovich–Weyl postulates and can be used
for (an invertible) mapping of operators into c-number functions. Note, that we do not
fix the dimension of group representation, which reflects in the dependence of the kernel,
and consequently the j -symbols, on three angles. In this sense, the mapping (21) is not
a representation of operators in the classical phase space (which necessarily should be of
even dimension). The main difference with the standard Stratonovich–Weyl mapping (see
section 2) is in the possibility of reconstruction, equations (28) and (29), of the whole
operator (in particular, the density matrix) and not only its projection on irreducible subspaces.
Nevertheless, the j -symbol of any operator acting in a single SU(2)-irreducible subspace does
not depend on the angle ψ (due to Q′ = 0) and has the standard Stratonovich–Weyl form
(8). It is worth noting that the index j takes only integer values for the symbols which do not
depend on the angle ψ.

On the other hand, the standard definition (1) of the kernel (for a single irreducible
representation of the SU(2) group) is obtained by integrating ω̂j (�) over ψ ,∫ 4π

0

dψ

4π
ω̂j (�) = ŵj/2(θ, φ),

where ŵ(θ, φ) is the Stratonovich–Weyl kernel (1).
For representation purposes sometimes it is convenient to use the polar parametrization

(ω, ϑ, ϕ) of the j -symbols instead of the Euler angles. Then, each j -symbol can be visualized
as a function on S3, where ω, 0 � ω < 4π represents the radius of the three-dimensional
sphere (a meta-phase space [18]). We note that the j -symbol is explicitly periodic on ω

(compare with [24]).

3.2. Examples

Let us consider some examples of application of the map (20) and (21). First of all we note
that the j -symbols of the su(2) algebra generators have the standard Stratonovich–Weyl form
[16, 32]

W
j

Sk
(�) =

√
j/2(j/2 + 1)nk

∑
n=0,1,...

δjn, (31)

where δ-functions indicate admissible values of the index j and nk are components of the
unitary vector �n = (cos ϕ sin θ, sin ϕ sin θ, cos θ). In the same way, the symbols of squares of
generators and the total angular momentum operator J 2 = S2

x + S2
y + S2

z are

W
j

S2
k

(θ, φ) = 1

4

(√
(j + 3)(j − 1)j (j + 2)

(
n2

k − 1

3

)
+

j (j + 2)

3

) ∑
n=0,1,...

δj,n. (32)

7
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W
j

J 2(�) = j/2(j/2 + 1)
∑

n=0,1,...

δjn. (33)

The j -symbol of the ẑ operator, defined by its action on the spherical harmonics
ẑYjm(ϑ, ϕ) = cos ϑYjm(ϑ, ϕ), depends on the angle ψ,

Wj
z (�) = sin θ cos ψ

∑
n=0,1,...

δj,2n+1, (34)

due to the operator ẑ mixes different SU(2) irreducible subspaces. One can observe that only
odd values of j are admissible in this case.

As a second nontrivial example we find the Wigner j -function (symbol of the density
matrix) corresponding to the Bell state |�〉 = (|0, 0〉 + |1, 1〉)/√2,

W
j

�(�) = 1

2

[
δ0,j +

√
3

2
(1 + cos θ) cos(φ + ψ)δ1,j +

(
1

3
− cos θ√

2
+

√
5

2

3 cos2 θ − 1

6

)
δ2,j

]
.

As expected the Wigner function ‘lives’ in the subspaces with j = 0, 1, 2. It is worth noting
here that the term ∼δ1,j appears as an image of the operator |1, 1〉〈0, 0| + |0, 0〉〈1, 1|, which
is non-diagonal on the representations of the SU(2) group.

Finally, we will find the symbol of the two-mode coherent state

|αβ〉 = |α〉|β〉 = e− |α|2+|β|2
2

∞∑
n,m=0

αnβm

√
n!m!

|n〉|m〉. (35)

The state |αβ〉 depends on three real parameters (apart from the overall global phase), thus,
using the parameterization

|αβ〉 =
∑

N=0,1/2,1,...

e−iNψ0qN |N; θ0, ϕ0〉, r2 = |α|2 + |β|2, qN = e−r2/2 r2N

√
(2N)!

,

α = e−i(ϕ0+ψ0)/2r cos θ0/2, β = e−i(ψ0−ϕ0)/2r sin θ0/2,

|N; θ0, ϕ0〉 =
N∑

k=−N

√
(2N)!

(N − k)!(N + k)!
e−ikϕ0 sinN−k θ0/2 cosN+k θ0/2|k,N〉,

we obtain the following Wigner j -function:

W
j

αβ(�) = r2j e−r2

√
j + 1

j∑
K={0,1/2}

2K + 1√
(j + K + 1)!(j − K)!

χK(ω), (36)

where χK(ω) is the SU(2) group character

χK(ω) = sin
[
(2K + 1)ω

2

]
sin ω

2

,

and

cos
ω

2
= cos

θ − θ0

2
cos

φ − φ0

2
cos

ψ − ψ0

2
− cos

θ + θ0

2
sin

φ − φ0

2
sin

ψ − ψ0

2
.

For large values of r, we have j ∼ r � 1, then the sum (36) can be estimated as follows:

W
j

αβ(�) ≈ r2j e−r2

�(j + 2)

j∑
K={0,1/2}

(2K + 1)χK(ω)

= r2j e−r2

�(j + 2)

2

sin ω
2

∂ω sin
ω

2

{
(χj/2(ω))2, integer j

χ(j+1/2)/2(ω)χ(j−1/2)/2(ω), semi-integer j
.

Observe that the polar parametrization is especially suitable in this case, because the Wigner
function depends exclusively on the polar angle ω.

8
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4. The star-product operator

4.1. General expression

The star-product operator, L
j

fg ,

W
j

fg(�) = L
j

fg

(
W

j

f (�)Wj
g (�)

)
,

is derived in appendix B and has the following explicit form:

L
j

fg =
∫ 4π

0

dϕ dϕ′

(4π)2

∞∑
n=0

∞∑
j1,j2=0,1/2,...

an
j1+j2−j

2

√
(j1 + 1)(j2 + 1)

j + 1
F−1

j (J 2) (37)

× [(
(J +)nFj1(J

2) ei(j2−j+J 0)ϕ′) ⊗ (
(J−)nFj2(J

2) ei(j1−j−J 0)ϕ
)]

, (38)

where

J± = i e∓iψ

[
± cot θ

∂

∂ψ
+ i

∂

∂θ
∓ 1

sin θ

∂

∂φ

]
, J 0 = −i

∂

∂ψ
,

are the contravariant components of the SU(2) group generators and

J 2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂2

∂φ2
− 2 cos θ

∂2

∂φ∂ψ
+

∂2

∂ψ2

)]

is the corresponding Casimir operator, [J±,0, J 2] = 0, in the rotating frame [38]

an
J = (−1)n

n!(2J + n + 1)!
,

and Fj (J
2) is the operator-valued function, defined by its action on the Wigner D-function,

Fj (J
2)Dk

nm(�) = √
(k + j + 1)!(j − k)!Dk

nm(�). The integrals on ϕ and ϕ′ can be substituted
by the operator δ-functions, δ(j1 − j − J 0) and δ(j2 − j + J 0), and the sum on n can be
formally evaluated

L
j

fg =
∞∑

j1,j2=0,1/2,...

√
(j1 + 1)(j2 + 1)

j + 1
F−1

j (J 2)σ
(
J +

f ⊗ J−
g

)
× [(

Fj1(J
2)δ(j2 − j + J 0)

) ⊗ (
Fj2(J

2)δ(j1 − j − J 0)
)]

,

where

σ(z) =
∑

n

(−z)n

n!(j1 + j2 − j + n + 1)!
= 1

(
√

z)j1+j2−j+1
Jj1+j2−j+1(2

√
z)

and Jn(x) is the Bessel function. Nevertheless, the form (37) is more convenient for practical
applications.

Note, that if both operators act in a single SU(2) irreducible subspace (so that
∂ψWf (�) = ∂ψWg(�) = 0), the integration over ϕ and ϕ′ can be immediately performed
and the known form [32] for the standard Stratonovich–Weyl star product is automatically
restored.

The star-product operator (37) allows us to rewrite the evolution equation for the density
matrix in the Liouville-like (10) form for the j -symbol of the density matrix Wj(�) ≡ W

j
ρ (�),

i∂tW
j (�) = (

L
j

Hρ − L
j

ρH

)(
W

j

H (�)Wj(�)
)
, (39)

where W
j

H (�) is the j -symbol of the Hamiltonian.

9
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4.2. Large j -limit

In the limit j � 1, which corresponds to the physical situation when the initial state is
distributed among several SU(2) irreducible subspaces of large dimensions, the general
expression (37) can be essentially simplified. First of all, we rewrite (37) in the following
form:

L
j

fg =
∫ 4π

0

dϕ dϕ′

(4π)2

∞∑
n=0

∞∑
j1,j2=0,1/2,...

an
j−J0⊗I+I⊗J0

2

√
(j1 + 1)(j2 + 1)

j + 1
F−1

j (J 2)

× [(
(J +)nFj1(J

2) ei(j2−j+J 0)ϕ′) ⊗ (
(J−)nFj2(J

2) ei(j1−j−J 0)ϕ
)]

, (40)

where explicitly

an
j−J0⊗I+I⊗J0

2

= (−1)n

n!�(j + 1 + n − J 0 ⊗ I + I ⊗ J 0 + 1)
.

Making use of the asymptotic relation �(j + b + 1) � jb�(j + 1), so that

an
j−J0⊗I+I⊗J0

2

≈ (−1)n
(j + 1)J

0⊗I−I⊗J 0−n

n!(j + 1)!
,

(j1 + 1)!

(j + 1)!
≈ (j + 1)I⊗J 0

,
(j2 + 1)!

(j + 1)!
≈ (j + 1)−J 0⊗I ,

we can perform summation on n in (40) obtaining

(j1 + 1)!

(j + 1)!

∞∑
n=0

(J +)n ⊗ (J−)nan
j−J0⊗I+I⊗J0

2

≈ 1

(j2 + 1)!
exp

[
−J + ⊗ J−

j + 1

]
. (41)

Now, we represent the function Fj (k) in the following manner:

Fj (k) = (j + 1)!√
j + 1

[
k∏

n=0

1 + εn

1 − εn

] 1
2

= (j + 1)!√
j + 1

exp

[
1

2

k∑
n=0

ln
1 + εn

1 − εn

]
,

where ε = (j + 1)−1. Expanding the logarithm
k∑

n=0

ln
1 + εn

1 − εn
=

k∑
n=0

∞∑
m=0

2(εn)2m+1

2m + 1

= 2
k∑

n=0

[
εn +

ε3

5
n3 + · · ·

]
= εk(k + 1) +

ε3

10
[k(k + 1)]2 + · · · ,

we obtain the following approximate expression:

Fj (J
2) � (j + 1)!

√
ε exp

(
J 2

2
ε

)
. (42)

Substituting (41) and (42) into (40) we approximate the L
j

fg operator as follows:

L
j

fg � exp

(
−J 2

2
ε

)
exp[−εJ + ⊗ J−]

[
exp

(
J 2

2
ε

)
⊗ exp

(
J 2

2
ε

)]
(43)

×
∫ 4π

0

dϕ dϕ′

(4π)2

∞∑
j1,j2=0,1,...

(ei(j2−j+J 0)ϕ′
) ⊗ (ei(j1−j−J 0)ϕ), (44)

where the first operator, exp(−εJ 2/2), acts on both symbols.

10
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Finally, applying the Baker–Hausdorff expansion

ef̂ eĝ = ef̂ +ĝ+ 1
2 [f̂ ,ĝ]+···,

and using the identity

J 2(fg) = (J 2 ⊗ I + I ⊗ J 2 + 2J 0 ⊗ J 0 − J + ⊗ J− − J− ⊗ J +)(fg),

we arrive at the following approximate expression for the star-product operator:

L
j

fg � exp

[
−ε

2J 0 ⊗ J 0 + J + ⊗ J− − J− ⊗ J +

2

]

×
∫ 4π

0

dϕ′ dϕ

(4π)2

∞∑
j1,j2=0,1/2,...

(ei(j2−j+J 0)ϕ) ⊗ (ei(j1−j−J 0)ϕ′
),

where the first operator exponent can still be expanded further in series,

exp

[
−ε

2J 0 ⊗ J 0 + J + ⊗ J− − J− ⊗ J +

2

]
≈ I − εJ 0 ⊗ J 0 − ε

2
(J + ⊗ J− − J− ⊗ J +),

in our order of exactitude.
Thus, the large j -limit of the evolution equation (39) acquires the form

i∂tW
j (�) = ε

2
(J− ⊗ J + − J + ⊗ J−)

∫ 4π

0

dϕ dϕ′

(4π)2

×
∞∑

j1,j2

[(
ei(j2−j+J 0)ϕ′

W
j1
H (�)

)
(ei(j1−j−J 0)ϕWj2(�))

+ (ei(j2−j−J 0)ϕ′
W

j1
H (�))(ei(j1−j+J 0)ϕWj2(�))

]
+ (I − εJ 0 ⊗ J 0)

∫ 4π

0

dϕ dϕ′

(4π)2

∞∑
j1,j2

[
(ei(j2−j+J 0)ϕ′

W
j1
H (�))(ei(j1−j−J 0)ϕWj2(�))

− (
ei(j2−j−J 0)ϕ′

W
j1
H (�)

)
(ei(j1−j+J 0)ϕWj2(�))

]
,

where j1, j2 take integer and semi-integer values. It is clear that in the case when both symbols
Wj(�) and W

j

H (�) do not depend on the angle ψ , the last two terms in the above equation
take the same value and thus, are cancelled out so that, the right-hand side is reduced to the
Poisson brackets between Wj(θ, φ) and W

j

H (θ, φ) on the sphere [32].
In the case, when the Hamiltonian is an operator from the enveloping algebra of su(2)

invariant operators (and thus leaves invariant each SU(2) irreducible subspace), its symbol
does not depend on the angle ψ and the only admissible values of the index j in W

j

H (�) are
integer. Besides, the Wigner function Wj(�) corresponding to different values of the index j

evolve independently. Then, the above evolution equation is essentially simplified especially
for the so-called semiclassical states, which are localized in each representation and ‘among’
representations (for instance, two-mode coherent states (35)):

i∂tW
j (�) = (

W
j−i∂ψ

H (�) − W
j+i∂ψ

H (�)
)
Wj(�)

+ iε

(
1

sin θ

(
∂W
φ ⊗ ∂H

θ − ∂W
θ ⊗ ∂H

φ

) − cot θ∂W
ψ ⊗ ∂H

θ

)

×
(
W

j−i∂ψ

H (�) + W
j+i∂ψ

H (�)
)

Wj(�) (45)

where � = (φ, θ) and the partial derivative on the angle ψ appearing in the index j of the
Wigner function can be understood as a formal series on ∂ψ :

W
j+i∂ψ

H (�)Wj(�) = W
j

H (�)Wj(�) + iWj

H (�)∂ψ

∂Wx(�)

∂x

∣∣∣∣
x=j

+ · · · .

11
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The first term in (45) shows that different invariant subspaces acquire different phases in the
course of evolution. It is worth noting that the index j in the Wigner function Wj(�) may
acquire both integer and semi-integer values.

As a simplest example let us consider evolution generated by the Hamiltonian

H = ωJ 2.

Taking into account (33) we immediately obtain the following approximate evolution equation:

∂tW
j (�) ≈ −ω(j + 1)∂ψWj (�),

where j takes only integer values, which solution,

Wj(�|t) = Wj(�|ψ − (j + 1)ωt),

coincides with the corresponding exact solution.
It is worth noting the existence of another nontrivial term, cot θ∂θW

j

H (�)∂ψWj(�),
in (45) which directly relates the dynamics in each irreducible subspace with the evolution
among different subspaces. As a second simple example we consider a linear but non-diagonal
Hamiltonian

H = ωSx.

Taking into account (31) we easily obtain from (45) the following evolution equation:

∂tW
j (�) =

(
−cos φ

sin θ
∂ψ + cot θ cos φ∂ϕ + sin φ∂θ

)
Wj(�),

having a simple solution Wj(�|t) = Wj(φ(t), θ(t), ψ(t)), where

cos θ(t) =
√

1 − c2 sin t + cos θ0, c = sin θ0 cos φ0,

cos φ(t) = c

sin θ(t)
, ψ(t) = ψ0 + c

∫ t

0

dτ

1 − cos2 θ(τ )
.

A nontrivial contribution from ψ(t) appears only if the initial state is distributed among several
SU(2) irreducible subspaces.

As a nontrivial example let us consider the following nonlinear two-mode Hamiltonian
(Lipkin–Meshkov–Glick [39] model):

H = χ

2
((a†a)2 + (b†b)2) +

g

2
(a†b + ab†).

This Hamiltonian preserves the integral of motion N = a†a + b†b corresponding to the
excitation number conservation, so that it can be recasted in terms of the su(2) algebra
generators as follows:

H = gSx + χS2
z + χN/2(N/2 + 1),

where Sx = (a†b+ab†)/2, Sz = (a†a−b†b)/2 and S2
x +S2

y +S2
z = N/2(N/2+1). If the initial

state belongs to a single SU(2) irreducible subspace the standard semiclassical methods can
be applied in the limit of large excitation numbers. Nevertheless, for an arbitrary initial state
a generalized evolution equation (45) should be used. For instance, let us suppose that both
fields are initially in strong coherent states: |α〉a|β〉b. Then, the symbol of such a state (36)
depends on ψ , so that the corresponding semiclassical evolution equation takes the form

∂tW
j (�) = g

(
cot θ cos φ∂φ + sin φ∂θ − cos φ

sin θ
∂ψ

)
Wj(�)

−χ(j + 1)

(
cos θ∂φ +

2

3
∂ψ

)
Wj(�).

12
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The general solution of the above equation is Wj(�|t) = Wj(φ(t), θ(t), ψ(t)), where
θ(t), φ(t) are solutions of the corresponding classical equations of motion,

θ̇ = −g sin φ,

φ̇ = χ(j + 1) cos θ − g cot θ cos φ,

and the angle ψ evolves according to

ψ(t) = ψ0 +
2

3
χ(j + 1)t + g

∫ t

0

cos φ(τ)

sin θ(τ )
dτ. (46)

This means, that to describe the dynamics of any operator non-diagonal on the su(2)

irreducible subspaces, for instance a† + a, in the semiclassical approach it is absolutely
necessary to take into account time evolution of the angle ψ . Really, taking into account
the representation of the annihilation operator a in the angular momentum basis |J,m〉, a =∑

J,m

√
J + m|J − 1/2,m − 1/2〉〈J,m| we obtain its j -symbol

Wj
a (�) =

√
(2j + 1)(2j + 3)

j + 1
e−i(φ+ψ)/2 cos θ/2,

where j takes only semi-integer values. The symbol W
j
a (�) explicitly depends on the angle

ψ , which means that equation (46) is vital for correct description of evolution of the average
value 〈a + a†〉.

5. Conclusions

We introduced a Wigner-like mapping for systems with SU(2) symmetry. Such mapping was
obtained in the frame of the Stratonovich–Weyl approach and the principal requirement we
have imposed is the covariance of symbols Wj(φ, θ, ψ) under transformations from the SU(2)

group. The main advantage of the present approach is in the possibility to represent the whole
density matrix, and not only its components in each SU(2) irreducible subspace, in terms of
c-valued functions. Also, such representation opens a possibility to study quasiclassical
dynamics of quantum systems. In the particular case, when the Hamiltonian preserves
irreducible subspaces the Wigner function evolves according to

Wj(�|t) = Wj(φ(t), θ(t), ψ + g(θ, φ|t)),
where θ(t), φ(t) are solutions of the classical equations of motion and the form of g(θ, φ|t)
depends on the Hamilton function.

We introduce a Wigner-like quasidistribution function to describe quantum systems with
SU(2) dynamic symmetry group. This function is defined in a three-dimensional group
manifold and can be used to represent quantum states having components in several SU(2)

invariant subspaces. It particular, it allows us to ‘draw’ non-diagonal (between irreducible
subspaces) elements of the density matrix.

An explicit differential Moyal-like form of the star product is found and analyzed in the
semiclassical limit, which opens a possibility to study semiclassical dynamics of quantum
systems including ‘diffusion’ among different SU(2) irreducible subspaces. Such diffusion
could appear only when the system’s Hamiltonian mixes irreducible subspaces. Such effect
can be observed, for instance, in the processes of interaction of polar molecules with
electromagnetic fields [40] (the problem of alignment and orientation of molecules in external
fields), when the interaction Hamiltonian has the following form:

H = J 2 + ωẑ + αẑ2,

13
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where ẑ is defined in equation (34)). Another example where a specific mixture the SU(2)

invariant subspaces is produced during the evolution is the Lipkin–Meshkov–Glick model
when one (or both) mode of the quantized field is pumped by an external source,

H = χ

2
((a†a)2 + (b†b)2) +

g

2
(a†b + ab†) + χ(a + a†).

It is worth noting here that under the action of a and a† the index j of the Wigner function
Wj(�) is displaced on 1/2, so that integer and semi-integer values of j are resulted to be
connected in the course of the Hamiltonian evolution. Some other problems as dynamics of
a charged particle in central field in the presence of electric field can also be studied in the
frame of the present formalism. These problems will be discussed by separately elsewhere.
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Appendix A

In this appendix, we prove the properties of the kernel (19).

(a) Hermiticity

ω
†
j (�n) =

j∑
K={0,1/2}

K={0,1/2}∑
Q,Q′=−K

√
2K + 1

j + 1
DK∗

QQ′(�n)T
† j+Q′

2
j−Q′

2
KQ

=
j∑

K={0,1/2}

K={0,1/2}∑
Q,Q′=−K

√
2K + 1

j + 1
DK∗

QQ′(�n)(−1)2K+Q′+QT
j−Q′

2
j+Q′

2
K−Q

=
j∑

K={0,1/2}

K={0,1/2}∑
Q,Q′=−K

√
2K + 1

j + 1
(−1)Q

′−QDK
−Q−Q′(�n)(−1)2K+Q′+QT

j−Q′
2

j+Q′
2

K−Q

=
j∑

K={0,1/2}

K={0,1/2}∑
Q,Q′=−K

√
2K + 1

j + 1
(−1)2K+2Q′

DK
QQ′(�n)T

j+Q′
2

j−Q′
2

KQ = ωj(�n),

due to K + Q′ being always an integer.
(b) Covariance

Tgωj (�)T †
g =

j∑
K={0,1/2}

K={0,1/2}∑
Q,Q′=−K

√
2K + 1

j + 1
DK

QQ′(�)TgT
j+Q′

2
j−Q′

2
KQ T †

g

=
j∑

K={0,1/2}

K={0,1/2}∑
Q,Q′=−K

√
2K + 1

j + 1
DK

QQ′(�)
∑

q

T
j+Q′

2
j−Q′

2
Kq DK

qQ(g)

=
j∑

K={0,1/2}

K={0,1/2}∑
q,Q′=−K

√
2K + 1

j + 1
T

j+Q′
2

j−Q′
2

Kq DK
qQ′(g · �) = ωj(g · �).

(c) Integration of the kernel over the group (normalization)

14
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∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ 4π

0
dψ ωj(�) =

j∑
K

√
2K + 1

j + 1

K∑
Q,Q′=−K

16π2δK,0δQ,0δQ′,0T
j+Q′

2
j−Q′

2
KQ

=
{

16π2√
j+1

T
j/2j/2

00 = 16π2

j+1 Ij+1, j integer

0, j semi-integer.

(d) Trace of the kernel

tr(ωj (�)) =
j∑

K={0,1/2}

√
2K + 1

j + 1

K∑
Q,Q′=−K

DK
QQ′(�)

√
j − Q′ + 1δK0δQ0δj+Q′j−Q′

=
{

1, j integer
0, j semi-integer.

(e) Reproductive kernel

tr
(
ωj(�)ω

†
j1
(�′)

) =
j∑
K

√
2K + 1

j + 1

j1∑
K1

√
2K1 + 1

j1 + 1

K∑
Q,Q′=−K

K1∑
Q1,Q

′
1=−K1

× DK
QQ′(�)D

K1∗
Q1Q

′
1
(�′)δKK1δQQ1δj,j1δQ′,Q′

1

= δjj1

j∑
K

2K + 1

j + 1

K∑
Q,Q′=−K

DK
QQ′(�)DK∗

QQ′(�
′) = δjj1�j(�,�′),

where �j(�,�′) is a delta function on the group manifold for the j -symbols,

∫
dV ′�j(�,�′)Wj

f (�′) =
∫

dV ′
j∑
K

2K + 1

j + 1

K∑
Q,Q′=−K

DK
QQ′(�)DK∗

QQ′(�
′)Wj

f (�′)

=
∫

dV ′
j∑
K

2K + 1

j + 1

K∑
Q,Q′=−K

DK
QQ′(�)DK∗

QQ′(�
′)

×
j∑
k

k∑
q,q ′=−k

√
2k + 1

j + 1
f

j+q′
2

j−q′
2

kq Dk∗
qq ′(�

′)

=
j∑
K

2K + 1

j + 1

K∑
Q,Q′=−K

DK
QQ′(�)

j∑
k

k∑
q,q ′=−k

√
2k + 1

j + 1
f

j+q′
2

j−q′
2

kq

×
∫

dV ′DK∗
QQ′(�

′)Dk∗
qq ′(�

′)

=
j∑
K

2K + 1

j + 1

K∑
Q,Q′=−K

DK
QQ′(�)

j∑
k

k∑
q,q ′=−k

×
√

2k + 1

j + 1
f

j+q′
2

j−q′
2

kq

16π2

2K + 1
δKkδQqδQ′q ′

= 16π2

j + 1

j∑
k

k∑
q,q ′=−k

Dk
qq ′(�)

√
2k + 1

j + 1
f

j+q′
2

j−q′
2

kq = 16π2

j + 1
W

j

f (�).
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Appendix B

In this appendix, we derive the general expression for the star-product operator.
First of all we note that the j -component, equation (18), of an operator can be expressed

as

f̂ =
∑

l,l′=0,1/2,1,...

l′+l∑
k=|ĺ−l|

k∑
m=−k

f l′l
kmT l′l

kmδl′+l,j ,

then the j -component of the product of two operators is represented as follows:

f̂ ĝ =
∑
l1,l

′
1

∑
k1,m

′
1

∑
l2,l

′
2

∑
k2,m

′
2

f
l′1l1
k1m

′
1
g

l′2l2
k2m

′
2
T

l′1l1
k1m

′
1
T

l′2l2
k2m

′
2
δl′1+l2,j . (B.1)

Taking into account that a product of two tensor operators can be expanded as a linear
combination of them,

T
J ′

1J1

K1Q1
T

J ′
2J2

K2Q2
= δJ1J

′
2

√
(2K1 + 1)(2K2 + 1)

∑
K3Q3

(−1)2K1+2K2−K3+J2+J ′
1

×C
K3Q3
K1Q1K2Q2

{
K1K2K3

J2J
′
1J1

}
T

J ′
1J2

K3Q3

and that 6j can be conveniently represented in terms of the Clebsch–Gordan coefficients [32]{
K1K2K3

J1J2J3

}
= (−1)K1+J2+J3

√
2K1 + 1

F
K1
J2J3

F
K2
J1J3

F
K3
J1J2

√
(K1 + J2 − J3)!

(K1 − J2 + J3)!

(K2 + J1 − J3)!

(K2 − J1 + J3)!

×
∞∑

j=0

a
j

J3
b

J1J2J3
K1K2j

C
K1J3−J2+j

K2J3−J1+jK3J1−J2
,

where

a
j

J3
= (−1)j

j !(2J3 + j + 1)!
,

b
J1J2J3
K1K2j

=
√

(K1 − J2 + J3 + j)!(K2 − J1 + J3 + j)!

(K1 + J2 − J3 − j)!(K2 + J1 − J3 − j)!
,

FK
J1J2

=
√

(J1 + J2 + K + 1)!(J1 + J2 − K)!,

we obtain for the j -symbol of the product (B.1)

f̂ ĝ =
∑
l1,l

′
1

∑
k1,m

′
1

∑
l2,l

′
2

∑
k2,m

′
2

∑
l3,l

′
3

∑
k3,m

′
3

(−1)2k1+2k2−k3+l2+l′1f
l′1l1
k1m

′
1
g

l′2l2
k2m

′
2
δl′1+l2,j δl1,l

′
2
δl′1,l

′
3
δl2,l3 (B.2)

×
√

(2k1 + 1)(2k2 + 1)C
k3m

′
3

k1m
′
1k2m

′
2

{
k1k2k3

l2l
′
1l1

}
T

l′3l3
k3m

′
3

(B.3)

=
∑
©

(−1)2k1+2k2−k3+l2+l′1
√

(2k1 + 1)(2k2 + 1)f
l′1l1
k1m

′
1
g

l′2l2
k2m

′
2
δl′1+l2,j δl1,l

′
2
δl′1,l

′
3
δl2,l3 (B.4)

×
∞∑

n=0

(−1)k1+l1+l′1√
2k1 + 1

an
l1
b

l2l
′
1l1

k1k2n

√
(k1 − l1 + l′1)!
(k1 + l1 − l′1)!

(k2 + l2 − l′2)!
(k2 − l2 + l′2)!

(B.5)

×
F

k1

l′1l1
F

k2

l′2l2

F
k3

l′3l3

C
k1 l1−l′1+n

k2 l′2−l2+n k3 l3−l′3
C

k3m
′
3

k1m
′
1k2m

′
2
T

l′3l3
k3m

′
3
, (B.6)
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where
∑

© = ∑
l1,l

′
1

∑
k1,m

′
1

∑
l2,l

′
2

∑
k2,m

′
2

∑
l3,l

′
3

∑
k3,m

′
3
. Using the transformation relations

for the Clebsch–Gordan coefficients

C
k3 m′

3

k1 m′
1 k2 m′

2
= (−1)k1−m′

1

√
2k3 + 1

2k2 + 1
C

k2 m′
2

k3 m′
3 k1−m′

1
,

C
k1 l1−l′1+n

k2 l′2−l2+n k3 l3−l′3
= (−1)k3+l3−l′3

√
2k1 + 1

2k2 + 1
C

k2 l′2−l2+n

k3 l′3−l3 k1 l1−l′1+n
,

and the integral representation for a product of two Clebsch–Gordan coefficients

C
k2 l′2−l2+n

k3 l′3−l3 k1 l1−l′1+n
C

k2 m′
2

k3 m′
3 k1−m′

1

= (−1)l1−l′1+m′
1+n 2k2 + 1

16π2

∫
dV D

k3

m′
3 l′3−l3

(�)D
k1∗
m′

1 l′1−l1−n
(�)D

k2∗
m′

2 l′2−l2+n
(�),

we rewrite (B.2) as follows:

f̂ ĝ =
∑
©

1

16π2

√
(2k1 + 1)(2k2 + 1)(2k3 + 1)f

l′1l1
k1m

′
1
g

l′2l2
k2m

′
2
δl′1+l2,j δl1,l

′
2
δl′1,l

′
3
δl2,l3

×
∞∑

n=0

(−1)nan
l1
b

l2l
′
1l1

k1k2n

√
(k1 − l1 + l′1)!
(k1 + l1 − l′1)!

(k2 + l2 − l′2)!
(k2 − l2 + l′2)!

×
F

k1

l′1l1
F

k2

l′2l2

F
k3

l′3l3

∫
dV D

k3

m′
3 l′3−l3

(�)D
k1∗
m′

1 l′1−l1−n
(�)D

k2∗
m′

2 l′2−l2+n
(�)T

l′3l3
k3m

′
3
,

where the triangle rule, |k2 − l2| � l1 � k2 + l2, has been taken into account to simplify the
phase factor.

Now, we use the property of the Wigner D-functions

(J +)nD
k1∗
m′

1 l′1−l1
(�) = (−1)n

√
(k1 + l′1 − l1)!

(k1 + l′1 − l1 − n)!

(k1 − l′1 + l1 + n)!

(k1 − l′1 + l1)!
D

k1∗
m′

1 l′1−l1−n
(�),

(J−)nD
k2∗
m′

2 l′2−l2
(�) =

√
(k2 − l′2 + l2)!

(k2 − l′2 + l2 − n)!

(k2 + l′2 − l2 + n)!

(k2 + l′2 − l2)!
D

k2∗
m′

2 l′2−l2+n
(�),

where

J± = ie∓iψ

[
± cot θ

∂

∂ψ
+ i

∂

∂θ
∓ 1

sin θ

∂

∂φ

]
, J 0 = −i

∂

∂ψ

are the contravariant components of the SU(2) generators in the rotating system [38], and
obtain

f̂ ĝ =
∑
©

1

16π2

√
(2k1 + 1)(2k2 + 1)(2k3 + 1)f

l′1l1
k1m

′
1
g

l′2l2
k2m

′
2
δl′1+l2,j δl1,l

′
2
δl′1,l

′
3
δl2,l3T

l′3l3
k3m

′
3

×
∞∑

n=0

an
l1

F
k1

l′1l1
F

k2

l′2l2

F
k3

l′3l3

∫
dV

(
(J +)nD

k1∗
m′

1 l′1−l1
(�)

)(
(J−)nD

k2∗
m′

2 l′2−l2
(�)

)
D

k3

m′
3 l′3−l3

(�).

After some long but straightforward algebra the above expression can be rewritten as follows:
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f̂ ĝ =
∞∑

j1,j2=0,1/2,...

√
(j1 + 1)(j2 + 1)(j + 1)

16π2

∑
⊕

√
(2k1 + 1)(2k2 + 1)(2k3 + 1)

(j1 + 1)(j2 + 1)(j + 1)
(B.7)

× f
j1+m1

2
j1−m1

2

k1m
′
1

g
j2+m2

2
j2−m2

2

k2m
′
2

∞∑
n=0

an
j1+j2−j

2

×
∫ 4π

0

dϕ1 dϕ2 dϕ3

(4π)3
ei(j1−j2)ϕ1 ei(j1−j)ϕ2 ei(j2−j)ϕ3 (B.8)

×
∫

dV (J +)n
(
Fj1 e−iJ 0(ϕ1−ϕ2)D

k1∗
m′

1 m1
(�)

)
(J−)n

(
Fj2 e−iJ 0(ϕ1+ϕ3)D

k2∗
m′

2 m2
(�)

)
(B.9)

× (
F−1

j eiJ 0(ϕ2−ϕ3)D
k3

m′
3 m3

(�)
)
T

j3+m3
2

j3−m3
2

k3m
′
3

, (B.10)

where the property J 0Dk
m′m = −mDk

m′m and the integral representation of the Kroneker
δmn-function (note that the indices can be semi-integer)

δmn =
∫ 4π

0

dφ

4π
ei(m−n)φ

have been used, also the notation
∑

⊕ means

∑
⊕

=
j1∑

k1={0,1/2}

k1∑
m1,m

′
1=−k1

j2∑
k2={0,1/2}

k2∑
m2,m

′
2=−k2

j3∑
k3={0,1/2}

k3∑
m3,m

′
3=−k3

,

and we have introduced the operator-valued function Fj ≡ Fj (J
2), defined by its action on

the D-functions, Fj (J
2)Dk

nm = √
(k + j + 1)!(j − k)!Dk

nm, where

J 2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂2

∂φ2
− 2 cos θ

∂2

∂φ∂ψ
+

∂2

∂ψ2

)]
is the Casimir operator in the rotating frame [38]. Note that by construction the value of
(j1 + j2 − j)/2 is always integer.

In (B.7), the structure of the j -symbols is already recognizable so that using (21) and the
self-conjugation property of the Casimir operator we obtain

W
j

fg(�) =
∞∑

j1,j2=0,1/2,...

∞∑
n=0

an
j1+j2−j

2

√
(j1 + 1)(j2 + 1)

j + 1

×
∫ 4π

0

dφ1 dφ2 dφ3

(4π)5
ei(j1−j2)φ1 ei(j1−j)φ2 ei(j2−j)φ3 (B.11)

× F−1
j e−iJ 0(φ2−φ3)

[
(J +)n

(
Fj1 e−iJ 0(φ1−φ2)W

j1
f (�)

)
(J−)n

(
Fj2 e−iJ 0(φ1+φ3)Wj2

g (�)
)]

.

(B.12)

Finally, taking into account exp(α∂/∂x)f (x) = f (x + α) and the commutation relations
[J 0, J±] = ∓J± we obtain after integrating on φ3 the symbol of the product of f̂ and ĝ

operators in terms of their individual symbols:

W
j

fg(�) =
∫ 4π

0

dϕ dϕ′

(4π)2

∞∑
n=0

∞∑
j1,j2=0,1/2,...

an
j1+j2−j

2

√
(j1 + 1)(j2 + 1)

j + 1
F−1

j (J 2)

× [((J +)nFj1(J
2) ei(j2−j+J 0)ϕ′

W
j1
f (�))((J−)nFj2(J

2) ei(j1−j−J 0)ϕWj2
g (�))].
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